NVIDIA Jetson Nano學習筆記(四):安裝與執行Tensorflow Lite Model官方範例
3 min readMar 13, 2020
更新
sudo apt-get update
sudo apt-get upgrade
安裝Cython或更新Cython
pip3 install Cython
pip3 install --upgrade Cython
安裝Numpy
sudo apt-get install python3-numpy
pip3 install numpy
安裝Tensorflow Lite(Python 3.6/ Linux ARM 64)
依照自己Nano的環境去調整Python 3.5 or 3.6 or 3.7。但是ARM 64 是肯定的。(Raspberry Pi為Linux ARM 32)
pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp36-cp36m-linux_aarch64.whl
下載範例圖片
# 取得 photo(grace_hopper.bmp)
curl https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/lite/examples/label_image/testdata/grace_hopper.bmp > /tmp/grace_hopper.bmp# 取得 model(mobilenet_v1_1.0_224.tflite)
curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224.tgz | tar xzv -C /tmp# 取得labels(labels.txt)
curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_1.0_224_frozen.tgz | tar xzv -C /tmp mobilenet_v1_1.0_224/labels.txt# 將labels.txt移動到/tmp/
mv /tmp/mobilenet_v1_1.0_224/labels.txt /tmp/
執行官方範例
從以下指令可以看到,我們只需要將model_file、label_file、image,改成自己訓練的model、建立的label和想辨識的image,即可重製辨識結果。
python3 label_image.py \
--model_file /tmp/mobilenet_v1_1.0_224.tflite \
--label_file /tmp/labels.txt \
--image /tmp/grace_hopper.bmp
輸出結果:
0.728693: military uniform
0.116163: Windsor tie
0.035517: bow tie
0.014874: mortarboard
0.011758: bolo tie