How To Convert Deform Conv2d into onnx format in PyTorch?
1 min readJan 2, 2024
Installation
pip install deform_conv2d_onnx_exporter
Usage
import torch
import torch.onnx
import pwd
import os
from arch_network import DeformConvNetwork
from torchvision.ops.deform_conv import DeformConv2d
import deform_conv2d_onnx_exporter
deform_conv2d_onnx_exporter.register_deform_conv2d_onnx_op()
"""
Convert model that contains deform conv2d layer into onnx format
https://pypi.org/project/deform-conv2d-onnx-exporter/1.0.0/
"""
#Function to Convert to ONNX
def Convert_ONNX(model):
# set the model to inference mode
model.eval()
# Let's create a dummy input tensor
dummy_input = torch.randn(1, 3, 256, 256, requires_grad=True)
# Export the model
torch.onnx.export(model, # model being run
dummy_input, # model input (or a tuple for multiple inputs)
"./onnx/network.onnx", # where to save the model
export_params=True, # store the trained parameter weights inside the model file
opset_version=12, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ["input", "offset"], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={'modelInput' : {0 : 'batch_size'}, # variable length axes
'modelOutput' : {0 : 'batch_size'}})
print(" ")
print('Model has been converted to ONNX')
if __name__ == "__main__":
model = DeformConvNetwork()
model.load_state_dict(torch.load(f"/home/{pwd.getpwuid(os.getuid()).pw_name}/experiments/network.pth"))
Convert_ONNX(model)